PENERAPAN ALGORITMA K-MEANS CLUSTERING PADA K-HARMONIC MEANS UNTUK SCHEDULE PREVENTIVE MAINTENANCE SERVICE

Muryan Awaludin

Sari


Abstract: Vehicle  maintenance  is a  very  important  sector  in  terms  of  economy  and  safety,  a good understanding of vehicle maintenance is very important  from the owner of the vehicle it self or from the company. Maintenance for the vehicle is considered as part structure of the activity in a series of improvements, as well as a planned activity to prevent potential errors resulting in damage. Schedule preventive maintenance is one of the methods that are used for vehicle maintenance scheduling. SPM is widely used because  it  can  determine  component  reliability  item,  so  as  to  reduce  the  cost  of repairs,  but  this  method  has  the  disadvantage  that  reparations  are  made  to  the  unit item could potentially breakdown, as well as the application of SPM only on certain types  of  vehicles.  To  solve  this  problem  it  is  proposed  the  one  application  of  a method,  algorithm  K-Means  Clustering  is  one  of  the  methods  to  be  applied  in  the schedule vehicle maintenance services, K-Means algorithm is widely used because it is  easy  and  simple.  From  the  models  created  will  then  be  tested  using  Confucion Matrix to determine how the level of accuracy, and describes the results of a positive predictive accuracy results are correct, the positive predictions were wrong, negative predictions  are  true,  and  false  negative  predictions.  From  these  experiments  showed that  the  application  of  K-Means  Clustering  algorithms  in  the  vehicle's  maintenance schedule capable of generating predictive value and accuracy that is optimal by 70%.


Teks Lengkap:

PDF

Referensi


Agustina, S., Yhudo, D., Santoso, H., Marnasusanto, N., Tirtana, A., & Khusnu, F., Clustering Kualitas Beras Berdasarkan Ciri Fisik Menggunakan Metode K- Means Algoritma (2014).

Asti, M. M., & Prasetyawan, Y., Penjadwalan Preventive Maintenance berdasarkan Perspektif, 1 (6) - June, 2013, 1012-1108.

Barlow, R., & Hunter, L., Optimum Preventive Maintenance Policies. Operations Research, 8 (1) - June, 1960, 2241-1082.

Chen, M., Mizutani, S., & Nakagawa, T., International Journal of Reliability, Quality and Safety Engineering, Random and age replacement policies. 17 (1) - January, 2010, S0218539310003652

Curcuru, G., Galante, G., & Lombardo, A., Reliability Engineering and System Safety, A predictive maintenance policy with imperfect monitoring. 95 (9) - April, 2010.

Endrenyi, J., & Anders, G. J., IEEE Power and Energy Magazine, Maintainability, maintenance, and reliability for engineers, 4, Informa CRC Press, 2006.

Fei, R., Mobley, R. K., & Wikoff, D. J., Maintenance Engineering Handbook.,Tissue engineering Part C Methods, 7, The McGraw Hill Companies, 2008, New York - USA.

Gaikindo. (2016). Domestic Auto Production By Category 2015.

Hillier, F. S., & Editor, S., Handbook of production scheduling, Jefferey W. Hermann, 2006, University of Maryland - USA.

Joel Levitt, Complete Guide to Preventive and Predictive Maintenance. Industrail Press Inc, Second Edition, Joel Levitt, 2011, New York.

Kamber, M., & Han, J., Data Mining : Concepts and TechniquesUniversity of Illinois at Urbana-Champaign, 2nd, Jiawei Han, 2008, University of Illinois at Urbana - USA.

Kenne, J. P., & Boukas, E. K., Mathematical and Computer Modelling, Hierarchical Control of production and maintenance rates in a Multiple- product manufacturing systems, 9 (1) - February, 2003, S0895-7177.

Kumar, S. A., & Suresh, N., Production and Operations Management, 2nd, New Age International Publishers, 2008, New Delhi - India.

Lin, Z. L., Huang, Y. S., & Fang, C. C., Reliability Engineering and System Safety, Non-periodic preventive maintenance with reliability thresholds for complex repairable systems, 136 (1) - December, 2015, 0951-8320.

Mishra, R. C., & Pathak, K., Maintenance Engineering and Management, 2nd, PHI Learning Private Limited, 2012, New Delhi - India.

Mobley, R. K., An introduction to predictive maintenance, 2nd, Butterworth Heinemann, 2002, Amsterdam.

Nowlan, F., Reliability Centered Maintenance, U.S Deartment of Commerce, 1978, San Francisco - california.

Nyman, D., & Levitt, J., Maintenance planning and scheduling coordination, 2nd , Industrial Press, 2001, New York.

Oded Maimon, L. R., Data Mining and Knowledge Discovery Handbook, 2nd , Heinemann, 2010, London.

OICA. (2016). Word Motor Vehicle Production By Country And Type, 27.

Oliver, R., & Rust, R., Service quality: new directions in theory and practice, First, Sage Publications, 1994, London.

Ong, J. O., Implementasi Algoritma K-Means Clustering untuk Menentukan Strategi Marketing, 1 - April, 2013.

Pham, H., & Wang, H., European Journal of Operational Research, Imperfect maintenance, 94 (3), - March, 1996, 0377-2217.

Purnama, J., Putra, Y. A., & Kalamollah, M., Metode Age Replacement Digunakan Untuk Menentukan Interval Waktu Perawatan Mesin Pada Armada BUS, 1, - Maret, 2015, 978-602-98569-1-0.

Rasindyo, M. R., Kusmaningrum, & Helianty, Y., Analisi Kebijakan Perawatan Mesin Cincinnati Dengan Menggunakan Metode RCM Di PT. DIRGANTARA INDONESIA, 3(1), Januari, 2015, ISSN 2238-5081.

Russell, S. J., & Norvig, P., Artificial Intelligence: A Modern Approach. Artificial Intelligence, 3tth, Artificial Intelligence, 2010, New Jersey.

Sahin, I., & Polatoglu, H., Quality, Warranty and Preventive Maintenance. First, Springer Science & Business Media, 1998, New York.

Saikhu, A., & Okta, Y., Perbandingan Kinerja Metode K-Harmonic Means dan Particle Swarm Optimization untuk Klasterisasi Data, 7 (2), - Juli, 2002, 1978-0087.

Syahruddin., Analisis Sistem Perawatan Mesin Menggunakan Metode Reliability Centered Maintenance ( RCM ) Sebagai Dasar Kebijakan Perawatan yang Optimal di PLTD “ X .”, 1 (1) - Oktober, 2013, 2338-6649.

Thearling, K., & Ph, D., An Introduction to Data Mining, 1 (47) - Februari, 2005. Wai-Fah Chen, Lian, & D., Bridge Engineering Handbook 2nd CONSTRUCTION AND MAINTENANCE, 2nd, CRC Press, 2014, London.

Wang, H., European Journal of Operational Research, A survey of maintenance policies of deteriorating systems. 139 (3) - November, 2002, S0377-2217.

Wang, Y., Deng, C., Wu, J., Wang, Y., & Xiong, Y., Engineering Failure Analysis, A corrective maintenance scheme for engineering equipment, 36 (1) - Oktober, 2014, 1108-1016.

Wardhani, A. K., Jurnal Transformatika, K-Means Algorithm Implementation for Patients Disease in Kajen Clinic of Pekalongan, 14 (1) - Juli, 2016, 30–37.

Wicaksana, I. W. S., Belajar Data Mining dengan RapidMiner, First, Remi Sanjaya, 2013, Jakarta - Indonesia.

Yang, F., Sun, T., & Zhang, C., Expert Systems With Applications, Expert Systems with Applications An efficient hybrid data clustering method based on K- harmonic means and Particle Swarm Optimization, 36 (6) - March, 2009, 9847–9852.

Yoo, J., & Lee, I. S., Computers & Industrial Engineering, Parallel machine scheduling with maintenance activities. 101 - September, 2016, 1016-1020.

Zhang, B., Hsu, M., & Dayal, U., Clustering Algorithm K -Harmonic Means -A Data Clustering Algorithm, 1 (26) - June, 1999.

Zhao, X., Al-khalifa, K. N., Magid, A., & Nakagawa, T., Reliability Engineering and System Safety, Age Replacement Models : A Summary with New Perspectives and Methods. 1 (161) - Januari, 2017.




DOI: https://doi.org/10.35968/jsi.v6i1.271

Refbacks

  • Saat ini tidak ada refbacks.


Indexed by: