¬¬IMPLEMENTASI NAÏVE BAYES DAN SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN ULASAN PADA GOOGLE PLAY

Yoke Lucia Renica Rehatalanit, Marcelino Paul Edwil Longdong, Achmad Ramadhany

Sari


Reviews on Google Play describes user sentiment towards the application according to the ratings and comments are given. In practice, there is often a discrepancy between the rating and the comments given, resulting in a biased sentiment, so it is necessary to analyze the review to find out the sentiment contained therein. In collecting data from the Google Play site using the Web Scraping technique with the google-play-scraper package from Python. Reviews that are successfully scraped then go through the preprocessing stage so that the data set is more structured. In the next stage, the data set is labeled based on the rating, and given a weight using TF-IDF. After classifying using the Naïve Bayes and Support Vector Machine methods, then evaluating using the confusion matrix, and validating using K-Fold Cross Validation. Research results using the Naïve Bayes method and Support Vector Machine for sentiment analysis on the Google Play website, the Naïve Bayes method produces 87.82% accuracy, 58.90% precision, 60.08% recall, while the Support Vector Machine method produces 90% accuracy .01% , precision 61.89%, recall 60.18%.


Teks Lengkap:

PDF

Referensi


Ahmad, F. (2020). Studi Perbandingan Metode Analisis Naive Bayes Classifier Dengan Support Vector Machine Untuk Analisis Sentimen (Studi Kasus: Tweet Berbahasa Indonesia Tentang Covid-19). 152.

Anjasmoros, M. T., Marisa, F., & Istiadi. (2020). Analisis Sentimen Aplikasi Go-Jek Menggunakan Metode Svm Dan Nbc (Studi Kasus: Komentar Pada Play Store). Conference on Innovation and Application of Science and Technology (CIASTECH 2020), (Ciastech), 489–498.

Awaludin, M. (2015). Penerapan Metode Distance Transform Pada Linear Discriminant Analysis Untuk Kemunculan Kulit Pada Deteksi Kulit. Journal of Intelligent Systems, 1(1), 49–55.

Awaludin, M., & Ridyustia Raveena, R. (2021). Penerapan Metode Rational Unified Process Pada Knowloedge Management System Untuk Mendukung Proses Pembelajaran Sekolah Menegah Atas. JSI (Jurnal Sistem Informasi) Universitas Suryadarma, 8(2), 159–170.

Awaludin, M., Yasin, V., & Risyda, F. (2024). The Influence of Artificial Intelligence Technology, Infrastructure and Human Resource Competence on Internet Access Networks. Inform : Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 9(2), 111–120. https://doi.org/10.25139/inform.v9i2.8109

Bahtera, E. G., Vidyarini, T. N., & ... (2019). Citra Shopee Pasca Kasus Petisi Pemboikotan Iklan Versi Blackpink “12.12 Birthday Sale” di Media Online. Jurnal E-Komunikasi.

Hussein, S. (2021). Support Vector Machine, Algoritma untuk Machine Learning – GEOSPASIALIS.

Ilmawan, L. B., & Mude, M. A. (2020). Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store. ILKOM Jurnal Ilmiah, 12(2), 154–161. https://doi.org/10.33096/ilkom.v12i2.597.154-161

Kurniawan, T. (2017). Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Media Mainstream Menggunakan Naïve Bayes Classifier Dan Support Vector Machine Media Mainstream. IT Journal, 23, 1.

Litbang, A. S. (2021). Mengenal Metode Analisis Klasifikasi Naive Bayes.

Masturoh, S. (2021). Analisis Sentimen Terhadap E-Wallet Dana Pada Ulasan Google Play Menggunakan Algoritma K-Nearest Neighbor. Jurnal Pilar Nusa Mandiri, 17(1), 53–58. https://doi.org/10.33480/pilar.v17i1.2182

Owen, L. (2020). NLP Bahasa Indonesia Resources.

Python Software Foundation. (2021). google-play-scraper · PyPI.




DOI: https://doi.org/10.35968/jsi.v11i2.1256

Refbacks

  • Saat ini tidak ada refbacks.


Indexed by: