PREDIKSI TINGKAT KELULUSAN MAHASISWA PROGRAM STUDI SISTEM INFORMASI DI UNIVERSITAS XXX MENGGUNAKAN ALGORITMA NAÏVE BAYES
Sari
The Information System Study Program at UNIVERSITAS XXX is a new major and the graduation of students is still few. Based on data obtained from graduates of the 2018/2019 academic year, 41 students graduated, including 26 students who experienced delays in taking their studies. The need for a system that can predict student graduation in order to major in Information Systems can produce more student graduations than ever before. Data mining using the Naïve Bayes algorithm method is one of the methods that utilizes probability calculations and statistics to predict future probabilities based on previous experience. Naïve Bayes is able to be applied in predicting graduation by utilizing previous student graduation data, The attributes used are Gender, Age, SKS, GPA, and Student Status. The results of research testing using RapidMiner 9.8 with 100 training data and 60 testing data, result accuracy 90%, recall 93.94%, and precision 88.57%. A computerized system built on a web basis using the PHP programming language.
Keywords: Graduation, Data Mining, Naïve Bayes, and Rapid Miner
Teks Lengkap:
PDFReferensi
Adekitan, A. I., & Salau, O. (2019). The impact of engineering students’ performance in the first three years on their graduation result using educational data mining. Heliyon, 5(2), e01250. https://doi.org/10.1016/j.heliyon.2019.e01250
Azhar, Z., Hutahaean, J., Siagian, Y., & Syah, A. Z. (2019). Pelatihan Microsoft Excel 2010 Pada Siswa Lembaga Kursus Pendidikan (LKP) Mandiri. Anadara Pengabdian Kepada Masyarakat, 1(2), 185.
Awaludin, M., & Mantik, H. (2023). PENERAPAN METODE SERVQUAL PADA SKALA LIKERT UNTUK MENDAPATKAN KUALITAS PELAYANAN KEPUASAN PELANGGAN Muryan Awaludin 1 , Hari Mantik 2 , Fadli Fadillah 3 1. Jurnal Sistem Informasi Univesitas Suryadarma, 10(1).
Broto Legowo, M., & Indiarto, B. (2017). Model Sistem Penjaminan Mutu Berbasis Integrasi Standar Akreditasi BAN-PT dan ISO 9001:2008. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 1(2), 90. https://doi.org/10.29207/resti.v1i2.51
Destiningrum, M., & Adrian, Q. J. (2017). Sistem Informasi Penjadwalan Dokter Berbassis Web Dengan Menggunakan Framework Codeigniter (Studi Kasus: Rumah Sakit Yukum Medical Centre). Jurnal Teknoinfo, 11(2), 30. https://doi.org/10.33365/jti.v11i2.24
Dewi, S. (2016). Komparasi 5 Metode Algoritma Klasifikasi Data Mining Pada Prediksi Keberhasilan Pemasaran Produk Layanan Perbankan. None, 13(1), 60–66.
Diqy Fakhrun Shiddieq, S.T., M. K., & Patricia. (2020). Implementasi Algoritma Data Mining Naive Bayes untuk Prediksi Kelulusan Mahasiswa. (456), 8–13.
Etriyanti, E., Syamsuar, D., & Kunang, Y. N. (2020). Implementasi Data Mining Menggunakan Algoritme Naive Bayes Classifier dan C4.5 untuk Memprediksi Kelulusan Mahasiswa. Telematika, 13(1), 56–67. https://doi.org/10.35671/telematika.v13i1.881
Febie Elfaladonna, A. R. (2019). Analisa Metode Classification-Decission Tree Dan Algoritma C.45 Untuk Memprediksi Penyakit Diabetes dengan menggunakan Aplikasi Rapid Miner. Science And Information Technology, 2(1), 10–17. Retrieved from http://jurnal.stiki- indonesia.ac.id/index.php/sintechjournal
Firman Azhar Riyadi. (2020). Implementasi Metode naive Bayes Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu Prodi Informatika (Studi Kasus : Universitas Teknologi Yogyakarta). 1–9.
Fitri Ayu and Nia Permatasari. (2018). perancangan sistem informasi pengolahan data PKL pada divisi humas PT pegadaian. Jurnal Infra Tech, 2(2), 12–26. Retrieved from http://journal.amikmahaputra.ac.id/index.php/JIT/article/download/33/25
Han, J., & Kamber, M. (2006). Data mining: Data mining concepts and techniques. In Proceedings - 2013 International Conference on Machine Intelligence Research and Advancement, ICMIRA 2013. https://doi.org/10.1109/ICMIRA.2013.45
Han, J., Kamber, M., & Pei, J. (2012). Data mining: Data mining concepts and techniques (Third Edition). In Proceedings - 2013 International Conference on Machine Intelligence Research and Advancement, ICMIRA 2013. https://doi.org/10.1109/ICMIRA.2013.45
Handayani, S. (2018). Perancangan Sistem Informasi Penjualan Berbasis E- Commerce Studi Kasus Toko Kun Jakarta. ILKOM Jurnal Ilmiah, 10(2), 182– 189. https://doi.org/10.33096/ilkom.v10i2.310.182-189
Harmianty, P. (2017). Aplikasi Prediksi Kelulusan Tepat Waktu Mahasiswa Menggunakan Algoritma C4.5. 1–9.
Hendini, A. (2016). Pemodelan UML Sistem Informasi Monitoring Penjualan Dan Stok Barang (Studi Kasus: Distro Zhezha Pontianak). Crop Science, 23(2), 201–205. https://doi.org/10.2135/cropsci1983.0011183x002300020002x
DOI: https://doi.org/10.35968/jsi.v11i1.1134
Refbacks
- Saat ini tidak ada refbacks.
Indexed by: