SISTEM PENGENALAN DAN VERIFIKASI WAJAH MENGGUNAKAN TRANSFER LEARNING BERBASIS RASPBERRY PI

Muhammad Farhan Aditama, Munnik Haryanti

Sari


Technology is currently developing rapidly, especially in artificial intelligence technology or AI. One part of artificial intelligence is deep learning. Deep learning is very powerful and capable of solving various problems with big data such as images, text and sound so that deep learning is widely used in research and industry needs. Face recognition and verification is an example of the application of artificial intelligence in the field of computer vision. In making facial recognition and verification using deep learning with the transfer learning method or pretrained models. Basically, the architecture of the model can be made by yourself (scratch). However, in making a model architecture that is made by yourself, it takes a lot of time to find a suitable architecture in solving certain problems, the model that is made by yourself also does not necessarily get a better level of accuracy and the inference process also takes a long time and requires sufficient data. so that the computer can recognize the image properly. The model architecture to be used is MobileNetV1 for face recognition and Facenet for face verification. Tests were carried out using a Raspberry PI with a camera-to-face distance of 40 cm, 70 cm and 100 cm and the closest distance obtained had high accuracy and an average accuracy rate of 83% with a response time of 1.26 seconds. Keywords : Transfer Learning, Raspberry PI, MobileNetV1, dan Facenet.

Teks Lengkap:

PDF

Referensi


Afrizal, Setia Juli Irzal Ismail, dan Gandeva Bayu Satrya, “Perancangan Sistem Keamanan Rumah Menggunakan Deteksi Wajah Berbasis Machine Learning Menggunakan Tensorflow”, Universitas Telkom, Bandung, 2022.

Adhi Setiawan, “Augmentasi Data Pada Computer Vision”, 2021, Diakses pada tanggal 21 September 2022 di situs https://medium.com/data-folks- indonesia/augmentasi-data-pada-

computer-vision-45c5ebe10e8f

D. Suprianto, “Sistem Pengenalan Wajah Secara Real-Time dengan Adaboost, EigenFace PCA & MySQL”, 2013.

Julpan, Erna Budhiarti Nababan, dan Muhammad Zarlis, “Analisis Fungsi Aktivasi Sigmoid Biner dan Sigmoid Bipolar Dalam Algoritma Backpropogation Pada Prediksi Kemampuan Siswa”, 2015.

Jeff Heaton, “Introduction to the Math of Neural Network”. 2005.

Munir, R. “Pengolahan Citra Digital”,

Informatika, Bandung, 2004

Pulung Adi Nugroho, Indah Fenriana, dan Rudy Arijanto, M.Kom, “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia”, 2020.

Pulung Nurtantio Andono, T. Sutojo, dan Muljono, “Pengolahan Citra Digital”, Penerbit ANDI, Yogyakarta, 2017.

Putri Nada Zakiya, Ledya Novamizanti, dan Syamsul Rizal, “Klasifikasi Patologi Makula Retina Melalui Citra OCT Menggunakan Convolutional Neural Network Dengan Arsitetur Mobilenet”, Universitas Telkom,

Bandung, 2021

S. Saha, “A Comprehensive Guide to Convolutional Neural Networks”, 2018, Diakses pada tanggal 20 September 2022 di situs https://towardsdatascience.com/a-

comprehensive-guide-toconvolutional-

neural-networks-the-eli5-way- 3bd2b1164a53

Suartika E. P, Arya Yudhi Wijaya Wijaya, dan Rully Soelaiman. “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) Pada Caltech 101.” 2016.

Sarirotul Ilahiyah, dan Agung Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network”, Universitas Muhammadiyah Jember, 2018.




DOI: https://doi.org/10.35968/jti.v12i1.1045

DOI (PDF): https://doi.org/10.35968/jti.v12i1.1045.g1025

Refbacks

  • Saat ini tidak ada refbacks.


Indexed by: