PENINGKATAN OPTIMASI SENTIMEN DALAM PELAKSANAAN PROSES PEMILIHAN PRESIDEN BERDASARKAN OPINI PUBLIK DENGAN MENGGUNAKAN ALGORITMA NAÏVE BAYES DAN PARICLE SWARM OPTIMIZATION
Sari
Abstract- The development of increasingly advanced IT in the process of presidential elections. When the Presidential election of 2014 yesterday has a lot of people use the phrase does not educate inappropriate to be delivered among the public. Pros and cons indeed occur among people are so warm that they pour on the internet. This happens because when getting warm diperbincangan 2014 presidential election yesterday happened pengkubu-kubuan two candidates. Society can not adjust the development of IT process well. Naive Bayes is widely used for classification problems in data mining and machine learning for its simplicity and accuracy of classification impressive. Naive Bayes classifier has been shown to be very effective to solve the problem of large scale for text categorization with high accuracy. In addition to having many capabilities mentioned above, however this method has a drawback in the assumptions that are difficult to fulfill, namely the independence of the feature. Particle Swarm Optimization (PSO) is an evolutionary computation technique which is able to produce globally optimal solution in the search space through the interaction of individuals in a swarm of particles. PSO is widely used to solve optimization problems as well as the feature selection. Accuracy is generated on Naive Bayes algorithm amounted to 63.85% and AUC by 0523, while Naive Bayes and Particle Swarm Optimmization with an accuracy of 71.15% and the AUC of 0.600. It can be concluded that the application of optimization can improve the accuracy of 63.85% to 71.15%. Naive Bayes Model and Particle Swarm Optimization can provide solutions to the problems of classification review of public opinion news of the election in order to more accurately and optimally.
Keywords:Public Opinion, Classification, Naive Bayes, Particle Swarm Optimization, Text Mining.
Teks Lengkap:
PDFReferensi
Andini (2013). Klasifikasi Dokumen Text menggunakan Algoritma Naive Bayes Dengan Bahasa Pemrograman Java. Jurnal Teknologi Informasi & Pendidikan. 2086-4981
Awaludin, M. (2015). Penerapan Metode Distance Transform Pada Linear Discriminant Analysis Untuk Kemunculan Kulit Pada Deteksi Kulit. Journal of Intelligent Systems, 1(1), 49–55.
Basari, A. S. H., Hussin, B., Ananta, I. G. P., & Zeniarja, J.(2013). Opinion Mining of Movie Review using HybridMethod of Support Vector Machine and Particle SwarmOptimization. Procedia Engineering, 53, 453-462.doi:10.1016/j.proeng.2013.02.059.
Berry, M.W. & Kogan, J. (2010). Text Mining Aplication and theory. WILEY : United Kingdom.
Feldman, Ronen and Sanger, James. (2007). The Text Mining Handbook Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, New York.Francisco: Diane Cerra.
Habernal, Ptáček, Steinberger. (2015). Reprint of “Supervised sentiment analysis in Czech social media”. Information Processing & Management, 50, 693-707
Haddi, E., Liu, X., & Shi, Y. (2013). The Role of Text Pre-processing in Sentiment Analysis. Procedia Computer Science, 17, 26–32. doi:10.1016/j.procs.2013.05.005
Han, J., & Kamber, M. (2007). Data Mining Concepts and Techniques. San Ilhan & Tezel 2013; Raghavendra. N & Deka, 2014; Zhao, Fu, Ji, Tang, & Zhou, 2011
Hashimi, Hussein, Alaaeldin Hafez, & Hassan Mathkour. (2014). Selection criteria for text mining approaches. Computers in Human Behavior. 729-733
Jiawei, H., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques Third Edition. Waltham, MA: Morgan Kaufmann.
Kaplan, A., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53, 59–68.
Kunaifi, Aang.(2009). Klasifikasi Email Berbahasa Indonesia menggunakan Text Mining dan Algoritma KMeans. Surabaya: Politeknik Elektronika Negeri Surabaya.
Liu, Bing. (2012). Sentiment Analysis And Opinion Mining. Chicago: Morgan & ClaypoolPublisher.
Liu, H., Tian, H., Chen, C., & Li, Y. (2013). Electrical Power and Energy Systems An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. International Journal of Electrical Power & Energy Systems, 52, 161–173.
M.R. Saleh, M.T. Martín-Valdivia, A. Montejo-Ráez, L.A. Ureña-López, Experiments with SVM to classify opinions in different domains, Expert Syst. Appl. 38 (2011) 14799–14804.
Moraes, R., Valiati, J. F., & Gavião Neto, W. P. (2013). Document-level sentiment.
Mostafa, Mohamed M. (2013). More than words: social network’s text mining for consumer brand sentiments. Expert Systems With Applications. 4241-4251
Nugroho, (2007). Pengantar Support Vector Machine.
Pang, B. & Lee, L. 2008. Subjectivity Detection and Opinion Identification. Opinion Mining and Sentiment Analysis. Now Publishers Inc. [Online]. Tersedia di: http://www.cs.cornell.edu/home/llee/opinion-mining-sentiment-analysissurvey.html.
Prasetyo, Heri. (2014). Data Mining Mengolah Data menjadi Informasi. Yogyakarta: Andi Offset.
Ramesh (2015). An Advanced Multi Class Instance Selection Based Support Vector Machine for Text Classification. Procedia Computer Science. 1124-1130.
Rocha, Leonardo et al (2013). Temporal contexts: effective text classification in evolving document collection. Information Systems. 388-409
Rozi, Hadi, Achmad. (2012), Implementasi Opinion Mining (Analisis Sentimen) untuk Ekstraksi Data Opini Publik pada Perguruan Tinggi. Jurnal EECCIS Vol. 6, No. 1, Juni 2012. Systems with Applications, 40(2), 621–633. doi:10.1016/j.eswa.2012.07.059
Statsoft. (2015). Naive Bayes Clasifier Introductory Overview. Retrieved April 22, 2015, from Statsoft Web Site: http://www.statsoft.com/textbook/naivebayes-classifier
Vercellis, C. (2009). Business Intelligence Data Mining And Optimization For Decision Making .United Kingdom: A John Wiley And Sons, Ltd.,Publication.
Wang, X., Wen, J., Zhang, Y., & Wang, Y. (2014). Optik Real estate price forecasting based on SVM optimized by PSO. Optik - International Journal for Light and Electron Optics, 125(3), 1439–1443.
Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining Practical Machine Learning Tools and Techniques (Third., p. 665).
Yao, Zhi-Min. (2012), An Optimized NBC Approach in Text Classification. Physics Procedia, 24, 1910-1914
Zhai, C., & Aggarwal, C. C. (2012). Mining Text Data. New York: Springer.
Zhao, M., Fu, C., Ji, L., Tang, K., & Zhou, M. (2011). Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Systems with Applications, 38(5), 5197–5204. doi:10.1016/j.eswa.2010.10.041.
DOI: https://doi.org/10.35968/jsi.v7i2.452
Refbacks
- Saat ini tidak ada refbacks.
Indexed by: